Loading
Пропустить Навигационные Ссылки.

Авторизоваться
Для зарегистрированных пользователей

назад

Интеграл Бернулли для непотенциальных сил. МГД приложения

Заволженская В.Л., Заволженский М.В., Руткевич П.Б.

// Электромагнитные явления, 2005. Т. 5. № 2(15). С. 195-209.

The Euler equations with an isotropic turbulent resistance being determinable by the Reynolds stresses have the Bernulli integral in that event when the fluid undergoes the impact of non-potential body forces. This kind of intergral is emploed for formulation of the problems of MHD flowaround for non-conductive bodies in the inductive approximation in constant applied magnetic field. The appropriate problems are reduced to intergration of the set of Neumann external boundary problems concerning the Laplace tquation for electric and hydrodynamic potential. Anew operation of the vector analysis has been determined: the direct product of several vectors. Emploing this operation facilites radically solution of the sets of linear algebraic eguations? simplifies computations made with the scalar? vector fnd mixed vectors products, makes easier the writing of sophisticated vector expressions, etc. A problem is now solved for the MHD conductive fluid flow running around the ellipsoid in magnetic field. A hydroelectromagnetic force expression is formulated for the effect of the flow on the ellipsoid. In the absence of electromagnetic field, this force determines the action on the ellipsoid of a conventional cieculation-free turbulent flow thereby removing the Eiler-d'Alambert paradox, since in the abcence of the field the current of the fluid is potential.

Ссылка на текст: http://www.emph.com.ua/15/pdf/zavol.pdf
назад